

Airport Pavements-From the Ground Up

AGGAA 1st Annual Conference Breakout Session #3 Jason Wright M.S., PE Denesch

Benesch-Services

Presentation Outline

Airport Pavement Design

- Brief History of Airfield Pavement Design
- Airfield Pavement Condition Rating System
- Repair And Rehabilitation Methods
- Designing Airfield Pavements- FAARFIELD 2.0
- Fleet Mix Determination
- Design Outputs-Final Pavement Design

History of FAA Pavement Design

- 1958- FAA adopted a policy of limiting aircraft for federal pavements to a pavement section designed to serve a 350,000-pound airplane with a DC-8-50 series landing gear configuration.
- Indented to make future airplanes equipped with landing gears that would not stress pavements more than the referenced 350,000-pound airplane

History of FAA Pavement Design


• Airplane followed the 1958 policy though exceeding 350,000 pounds through new gear configurations.

History of FAA Pavement Design

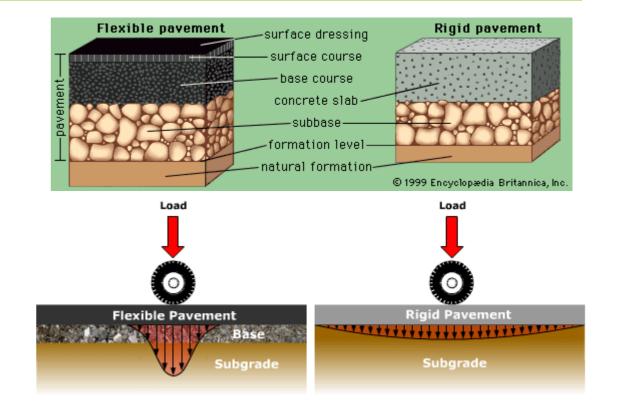
penesch

- With this change in philosophy and increasing airplane weights, airfield pavements must be designed to withstand increased loading conditions
- Historical FAA pavement design based on methods of analysis that resulted from empirical research and field performance

Airport Pavements From the Ground Up–AGGAA 1st Annual Conference

6

FAA Pavement Design



- FAARFIELD was published in 2009 and accompanied AC 150/5320-6E
- FAA Rigid and Flexible Iterative Elastic Layered Design
- Mixed both empirical testing with mechanistic design
- Validated through full scale testing in full-scale traffic tests at the FAA National Airport Pavement Test Facility
- FAARFIELD 2.0 Published in 2021 and accompanied AC 150/5320-6G

Types of Airfield Pavements

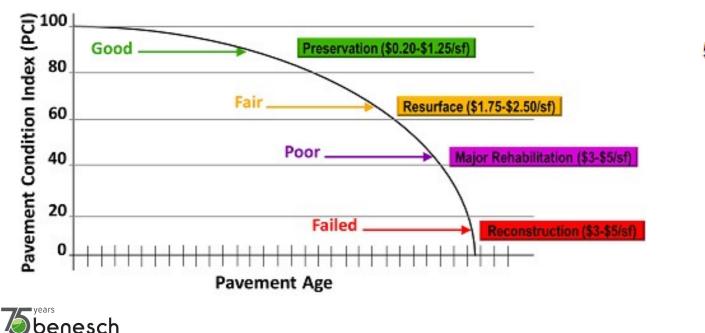
- Flexible Pavements (Asphalt)
- Rigid Pavements (Concrete)
- Flexible Overlay
- Rigid Overlay

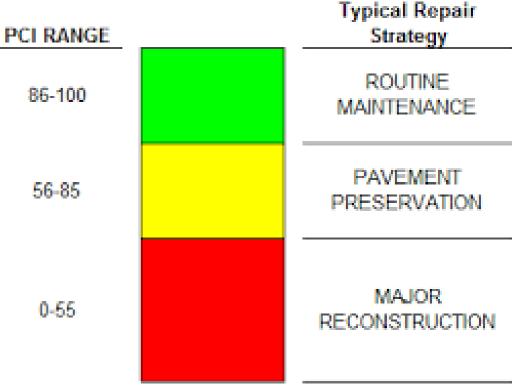
How Airfield Pavement Projects are Determined

New Pavement Projects

- CIP Projects for airport expansion
- Includes, Runway Extensions, Apron Expansion projects, New Parallel Taxiways, Etc.

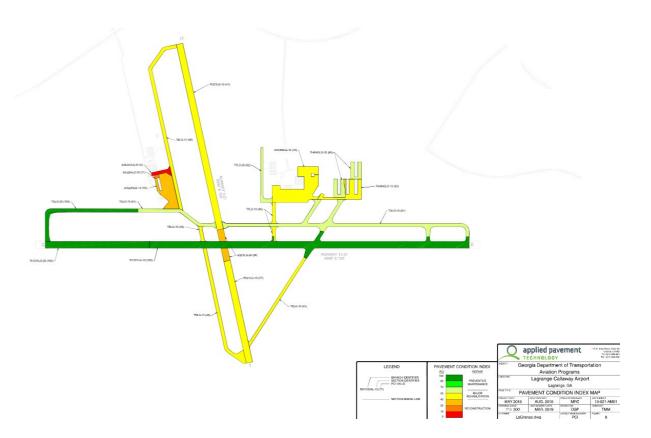
Existing Pavement Maintenance, Repair, and Strengthenin g


 Based off existing pavement condition to ensure airfield safety



Airfield Pavement Condition Index (PCI)

- Rated 0-100
- Used to program repair/maintenance on airfields



Airport Pavements From the Ground Up–AGGAA 1st Annual Conference

GDOT Statewide Airport Pavement Management System (APMS)

- Established in 1998 to monitor health of airport pavement in the state of Georgia
- Includes 94 general aviation airports & 8 commercial service airports
- Pavements Evaluated every 5 years with last evaluation in 2018

Airfield Pavements Maintenance- AC 150/5380-6B

 Maintenance includes any regular work necessary to preserve existing airport pavements in good condition

Flexible Pavement Maintenance

- Crack Sealing
- Fog Sealing
- Chip Sealing

Rigid Pavement Maintenance

- Crack Sealing
- Patching
- Joint Seal Replacement
- Airfield Rubber Removal

Airfield Pavement- Repair and Rehabilitation Methods

- Flexible Pavement
 - Crack repair
 - Partial and full Depth Repair
 - Mill & Overlay
 - Reconstruction-Includes Base
 - Full Depth Reclamation

Rigid Pavement

- Full Slab Replacement
- Partial Slab Replacement
- Full Depth Repair

New Airfield Pavements

AC 150/5320-6G-Airport

Pavement Design & Evaluation

- The FAA recommends the guidance and standards in this AC for airport pavement design and evaluation
- However, use of the standards in this AC is mandatory for all projects funded under the Airport Improvement Program (AIP)

Airport Pavement Design Standards

- •AC 150/5320-6G-Airport Pavement Design and Evaluation
 - Used for General Aviation, Commercial Airports
 - FAARFIELD Design Software

FAA Minimum Layer thicknesses

Table 3-4. Minimum Layer Thickness for Rigid Pavement Structures¹

Table 3-3. Minimum Layer Thickness for Flexible Pavement Structures¹

	EAA Specification Item	Maximum Aircraft Gross Weight Operating on Pavement, lbs (kg)						
Layer Type	FAA Specification Item	<60,000 (27,215)	<100,000 (45,360)	≥100,000 (45,360)				
Asphalt Surface ²	P-401/P-403	3 in (75 mm)	4 in (100 mm)	4 in (100 mm)				
Stabilized Base ³	P-401 or P-403; P-304; P- 306 ³	Not Required	Not Required	5 in (125 mm)				
Crushed Aggregate Base ^{5,6}	P-209, P-211	Not Required	6 in (150 mm)	6 in (150 mm)				
Aggregate Base ^{5,6}		6 in (75 mm)	n/a	n/a				
Drainable Base (When Used)	P-307, P-407 ⁷	Not Required	6 in (150 mm) when used	6 in (150 mm) when used				
Subbase ^{6,8}	P-154	6 in (150 mm) (if required)	6 in (150 mm) (If required)	6 in (150 mm) (if required)				

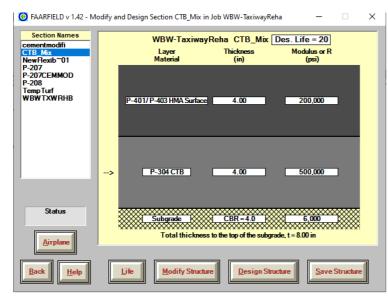
Notes:

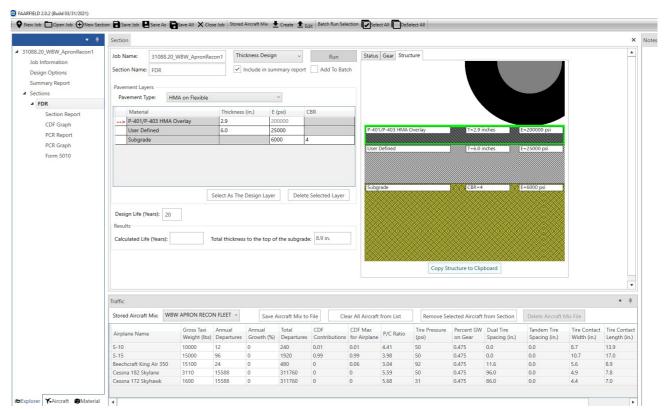
- 1. Structural design must be completed to determine layer thicknesses required to support actual traffic.
- P-403 as surface course when all aircraft less than 60,000 lbs (27215 kg). P-404-Fuel Resistant Hot Mix Asphalt may be used to replace the top 1 1/2 in (75 mm) to 3 in (75mm) of P-401 or P-403 where a fuel resistant surface is needed; structurally, P-404 considered same as P-401.
- 3. See paragraph 3.5, Stabilized Base Course, for requirements and limitations.
- 4. Use of P-304 or P-306 requires measures to control potential for reflective cracking.
- P-208, P-210, P-212, P-213, limited to pavements designed for gross loads of 60,000 pounds (27,215 kg) or less or for use as subbase.
- P-207, P-219 require laboratory testing to establish if it will perform as a base or subbase. If CBR >
 100 may be used as a stabilized base, If CBR > 80 may be used in place of P-209, CBR >60 in place of
 P-208. Both may be used as a subbase under stabilized base.
- 7. See EB 102, Asphalt Treated Permeable Base.
- P-154, when structural thickness of subbase required by FAARFIELD is less than 6 in, eliminate subbase in FAARFIELD and calculate thickness of base.

Layer Type	FAA	Maximum Aircraft Gross Weight Operating on Pavement, lbs (kg)							
	Specification Item			≥ 100,000 (45,360)					
Rigid Surface ²	P-501, Cement Concrete Pavement	6 in (150 mm) ²	6 in (150 mm) ²	6 in (150 mm)					
Drainable Base (When Used)	P-407 ⁵ , P-307		6 in (150 mm) when used	6 in (150 mm) When used					
Stabilized Base ³	P-401 or P-403; P-304; P-306	Not Required	Not Required	5 in (125 mm)					
Base ⁴	P-209, P-207, P-208, P-210, P-211, P-212, P-213, P-219, P-220	Not Required	6 in (150 mm)	6 in (150 mm)					
Subbase ⁵	P-154	6 in (100 mm)	As needed for frost or to create working platform	As needed for frost or to create working platform					

Notes:

1. Complete structural design to determine rigid surface layer thickness required to support actual traffic.


- Use greater of FAARFIELD thickness to the nearest 0.5 inch (10 mm), or minimum layer thickness, if all aircraft < 30,000 lbs (11,520 kg) 5 in (125 mm) minimum thickness.
- See paragraph <u>3.5</u>, Stabilized Base Course, for requirements and limitations. P-220 may be used under concrete with minimum thickness of 12" and when concrete thickness is increased by 3"
- P-207, P-219 require laboratory testing to establish if it will perform as a base or subbase. If CBR > 80
 may be used in place of P-209, CBR >60 in place of P-208. Both may be used as a subbase under
 stabilized base.
- Any base material may be used as a subbase.



6. See EB 102, *Asphalt Treated Permeable Base Course.* Airport Pavements From the Ground Up– AGGAA 1st Annual Conference

FAARFIELD 2.0

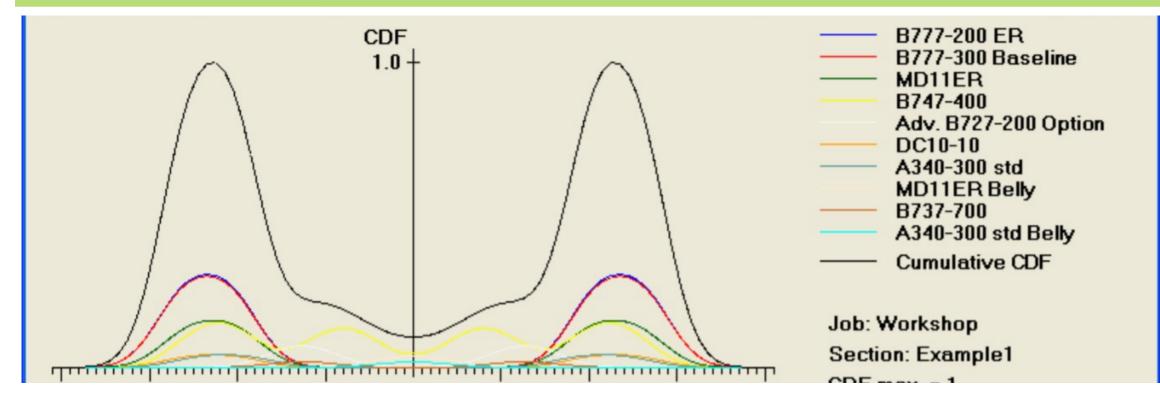
- Released June 2020 in conjunction with FAA AC 150/5320-6G
- New Graphical User Interface
- Updated Aircraft Library
- Added Vehicle Editor

Airport Pavements From the Ground Up– AGGAA 1st Annual Conference 18

Aircraft Traffic-Fleet Mix Determination

- Pavement Design/Performance based on allowable load repetitions to failure
- Standard designs based on years of traffic
- Designs typically based on departures only (arrivals ignored), with some exceptions
- Use complete fleet mix, not just design aircraft
- FAARfield Library includes 190 airplane models

Traffi


С

								Based & Transient Aircraft				
	Aircraft	Wingspan (ft)	MTOW [lbs]	Empty Weights [Ibs]	Fuel Capacity [lbs]	Estimated Fuel %	Weight For Pavement Design	Visits Per <mark>MONTH</mark>	Operations Per Month (Visits x 2)	Departures Per MONTH (Same as Visits)	Departures Per <mark>YEAR</mark>	Faarfield
	Pilatus PC-12	53.00	10,450	5,867	2,704	80%	9,909	30	60	30	360	S-10
	Cessna CJ3 (Model 525B)	53.30	13,870	8,720	4,710	80%	12,928	20	40	20	240	S-15
Light	King Air 350	57.92	15,000	10,000	3,611	80%	14,278	15	30	15	180	x
_	Beechjet 400	43.50	16,100	10,050	4,912	80%	15,118	15	30	15	180	х
	Phenom 300	53.17	17,968	11,583	5,353	80%	16,897	40	80	40	480	S-15
	Lear 55	43.83	21,500	13,000	6,705	80%	20,159	4	8	4	48	x
	Cessna XLS's (Model 560)	56.30	20,200	12,300	6,740	80%	18,852	40	80	40	480	S-20
	Lear 60	43.75	23,500	14,640	7,910	80%	21,918	15	30	15	180	D-20
	Cessna Citation Sovereign	72.33	30,775	18,300	11,390	80%	28,497	30	60	30	360	D-25
<u>-</u>	Hawker 800XP	54.33	28,000	15,670	10,000	80%	26,000	15	30	15	180	х
nall	Gulfstream G200	58.08	35,450	19,200	15,000	80%	32,450	15	30	15	180	D-30
	Cessna Citation X	63.58	35,700	21,600	13,097	80%	33,081	15	30	15	180	х
Medium (Small)	Challenger 300	63.83	38,850	23,349	14,150	80%	36,020	20	40	20	240	D-35
	Falcon 50	61.88	38,800	20,200	17,000	80%	35,400	10	20	10	120	х
2	Falcon 900	63.40	45,500	22,600	22,000	80%	41,100	10	20	10	120	x
	Falcon 2000's	63.40	41,000	20,735	12,155	80%	38,569	7	14	7	84	x
	Challenger-CL-604	64.33	48,200	27,200	21,000	80%	44,000	10	20	10	120	x
	Gulfstream III	77.83	70,200	38,000	30,000	80%	64,200	5	10	5	60	x
	E-145/Legacy	65.75	48,501	39,462	9,183	80%	46,664	3	6	3	36	ERJ-145 ER
-	Gulfstream II	68.83	66,000	36,500	28,000	80%	60,400	1	2	1	12	х
Medium (Large)	Gulfstream IV	77.83	75,000	35,500	38,000	80%	67,400	10	20	10	120	х
Ę	Falcon 7X	86.00	70,000	34,072	31,940	80%	63,612	5	10	5	60	D-75
л.	Gulfstream V	93.33	90,900	46,200	41,300	80%	82,640	5	10	5	60	x
led	Gulfstream 650	99.58	99,600	52,040	44,200	80%	90,760	4	8	4	48	D-100
2	Bombardier Global 7000	104.00	106,250	62,500	47,450	80%	96,760	5	10	5	60	D-100
<u>v</u>	Fuel Truck (1500 gal)		34,000			75%	34,000	1500	3000	1500	18000	
- <u>-</u>	Fuel Truck (3000 gal)		55,400			75%	46,850	400	800	400	4800	
Ξ	Fuel Truck (5000 gal)		71,000			75%	93,700	200	400	200	2400	
atio	Tractor Trailer Refueler (8000)	gal??)				100%		18	36	18	216	
Avia	Helicopters	33' to 47'	10,000			80%	10,000	100	200	100	1200	
tic	Challenger CL-350	69.00	40,600	28,200	14,150	80%	37,770	30	60	30	360	D-40
Atlantic Aviation Fill-ins	Cessna Citation Lattitude	72.33	30,800	18,656	11,394	80%	28,521	30	60	30	360	D-30
¥	Bombardier Global 7500	104.00	106,250	62,500	47,450	80%	96,760	8	16	8	96	D-100

Airport Pavements From the Ground Up–AGGAA 1st Annual Conference **20**

Cumulative Damage Factor (CDF)

- CDF is the basis for pavement design determinations
- Sums damage contributed from each aircraft
- When CDF = 1 (100%), design life is exhausted
- Must input fleet mix, NOT equivalent departures of design aircraft

Example FAARFIELD Design Outputs

Job Name: 190	22032 LGC T-Hangar	Thickness De	sign v	Run	Status Gear Structu	ire		A
Section Name: Opt	ion 2- 4"AC over GAB	✓ Include in	summary report	Add To Batch				
Pavement Layers Pavement Type:	HMA on Aggregate		~					
Material	1	Thickness (in.)	E (psi) CBR					
P-401/P-403 I	HMA Surface 4	4.0	200000		P-401/P-403 HMA Su	rface T=4.0 inches	E=200000 psi	
P-209 Crushe	d Aggregate 6	5.9	16598		1 401/1 405 1100 30		2-200000 psi	
Subgrade			4500 3		P-209 Crushed Aggre		C E=16598 psi	
Design Life (Years): Results Calculated Life (Yea	20	ct As The Design La thickness to the to	ayer Delete Sel	lected Layer 10.9 in.	Subgrade	Copy Structure to Clipboard	E=4500 psi	
								•
Traffic								▼ ₽
Stored Aircraft Mix:	Fleet Mix-All Super T-Ha	anga v Sa	ave Aircraft Mix to File	e Clear Al	I Aircraft from List	Remove Selected Aircraft from Section	Delete Aircraft Mix File	1

Stored Aircraft Mix.			Save A	Aircraft IVIIX to	Clear All Aircraft from List			Remove Selected Aircraft from Section			Delete Aircraft Mix File		
Airplane Name	Gross Taxi Weight (Ibs)	Annual Departures	Annual Growth (%)	Total Departures	CDF Contributions	CDF Max for Airplane	P/C Ratio	Tire Pressure (psi)	Percent GW on Gear	Dual Tire Spacing (in.)	Tandem Tire Spacing (in.)	Tire Contact Width (in.)	Tire Contact Length (in.)
S-12.5	10905	1040	0	20800	0.08	0.08	3.78	44	0.475	0.0	0.0	9.7	15.6
S-5	5290	2080	0	41600	0	0	4.54	53	0.475	0.0	0.0	6.2	9.8
S-15	15653	156	0	3120	0.92	0.92	3.62	52	0.475	0.0	0.0	10.7	17.0

Questions

Jason Wright, PE

Project Engineer jwright@benesch.com

2

Airport Pavements From the Ground Up– AGGAA 1st Annual Conference 23